Cimetidine competitively inhibits the action of histamine at the histamine H2 receptors of the parietal cells and thus is a histamine H2-receptor antagonist. Cimetidine is not an anticholinergic agent. Studies have shown that Cimetidine inhibits both daytime and nocturnal basal gastric acid secretion. Cimetidine also inhibits gastric acid secretion stimulated by food, histamine, pentagastrin, caffeine and insulin.
The half-life of cimetidine is approximately 2 hours. Both oral and parenteral (I.V. or I.M.) administration provide comparable periods of therapeutically effective blood levels; blood concentrations remain above that required to provide 80% inhibition of basal gastric acid secretion for 4 to 5 hours following a dose of 300 mg.
Steady-state blood concentrations of cimetidine with continuous infusion of cimetidine hydrochloride are determined by the infusion rate and clearance of the drug in the individual patient. In a study of peptic ulcer patients with normal renal function, an infusion rate of 37.5 mg/hour produced average steady-state plasma cimetidine concentrations of about 0.9 mcg/mL. Blood levels with other infusion rates will vary in direct proportion to the infusion rate.
The principal route of excretion of cimetidine is the urine. Following parenteral administration, most of the drug is excreted as the parent compound; following oral administration, the drug is more extensively metabolized, the sulfoxide being the major metabolite. Following a single oral dose, 48% of the drug is recovered from the urine after 24 hours as the parent compound. Following I.V. or I.M. administration, approximately 75% of the drug is recovered from the urine after 24 hours as the parent compound.
(1) Short-term treatment of active duodenal ulcer. Most patients heal within 4 weeks and there is rarely reason to use cimetidine at full dosage for longer than 6 to 8 weeks. Concomitant antacids should be given as needed for relief of pain. However, simultaneous administration of oral cimetidine and antacids is not recommended, since antacids have been reported to interfere with the absorption of oral cimetidine.
(2) Maintenance therapy for duodenal ulcer patients at reduced dosage after healing of active ulcer. Patients have been maintained on continued treatment with cimetidine 400 mg h.s. for periods of up to five years.
(3) Short-term treatment of active benign gastric ulcer. There is no information concerning usefulness of treatment periods of longer than 8 weeks.
(4) Prevention of upper gastrointestinal bleeding in critically ill patients.
(5) The treatment of pathological hypersecretory conditions (i.e., Zollinger-Ellison Syndrome, systemic mastocytosis, multiple endocrine adenomas).
Cimetidine is contraindicated for patients known to have hypersensitivity to the product.
Rare instances of cardiac arrhythmias and hypotension have been reported following the rapid administration of cimetidine hydrochloride injection by intravenous bolus.
Symptomatic response to cimetidine therapy does not preclude the presence of a gastric malignancy. There have been rare reports of transient healing of gastric ulcers despite subsequently documented malignancy.
Reversible confusional states have been observed on occasion, predominantly, but not exclusively, in severely ill patients. Advancing age (50 or more years) and pre-existing liver and/or renal disease appear to be contributing factors. In some patients these confusional states have been mild and have not required discontinuation of cimetidine therapy. In cases where discontinuation was judged necessary, the condition usually cleared within 3 to 4 days of drug withdrawal.
cimetidine therapy cannot be recommended for pediatric patients under 16
Cimetidine, apparently through an effect on certain microsomal enzyme systems, has been reported to reduce the hepatic metabolism of warfarin-type anticoagulants, phenytoin, propranolol, nifedipine, chlordiazepoxide, diazepam, certain tricyclic antidepressants, lidocaine, theophylline and metronidazole, thereby delaying elimination and increasing blood levels of these drugs.
Clinically significant effects have been reported with the warfarin anticoagulants; therefore, close monitoring of prothrombin time is recommended, and adjustment of the anticoagulant dose may be necessary when cimetidine is administered concomitantly. Interaction with phenytoin, lidocaine and theophylline has also been reported to produce adverse clinical effects.
However, a crossover study in healthy subjects receiving either cimetidine 300 mg q.i.d. or 800 mg h.s. concomitantly with a 300 mg b.i.d. dosage of theophylline extended-release tablets demonstrated less alteration in steady-state theophylline peak serum levels with the 800 mg h.s. regimen, particularly in subjects aged 54 years and older. Data beyond ten days are not available. Alteration of pH may affect absorption of certain drugs (e.g., ketoconazole). If these products are needed, they should be given at least 2 hours before cimetidine administration.
Gastrointestinal: Diarrhea (usually mild) has been reported in approximately 1 in 100 patients.
CNS: Headaches, ranging from mild to severe, have been reported in 3.5% of 924 patients taking 1600 mg/day, 2.1% of 2,225 patients taking 800 mg/day and 2.3% of 1,897 patients taking placebo. Dizziness and somnolence (usually mild) have been reported in approximately 1 in 100 patients on either 1600 mg/day or 800 mg/day.
Reversible confusional states, e.g., mental confusion, agitation, psychosis, depression, anxiety, hallucinations, disorientation, have been reported predominantly, but not exclusively, in severely ill patients. They have usually developed within 2 to 3 days of initiation of cimetidine therapy and have cleared within 3 to 4 days of discontinuation of the drug.
Endocrine: Gynecomastia has been reported in patients treated for one month or longer. In patients being treated for pathological hypersecretory states, this occurred in about 4% of cases while in all others the incidence was 0.3% to 1% in various studies. No evidence of induced endocrine dysfunction was found, and the condition remained unchanged or returned toward normal with continuing cimetidine treatment.
Reversible impotence has been reported in patients with pathological hypersecretory disorders, e.g., Zollinger-Ellison Syndrome, receiving cimetidine, particularly in high doses, for at least 12 months (range 12 to 79 months, mean 38 months). However, in large-scale surveillance studies at regular dosage, the incidence has not exceeded that commonly reported in the general population.
• Store below 30 C°
• Protect from light and freezing
• Injection 200mg/2ml:Box of 10 Ampoules
-
Histamine -2 Blocker
Antacid
Category B
Cimetidine competitively inhibits the action of histamine at the histamine H2 receptors of the parietal cells and thus is a histamine H2-receptor antagonist. Cimetidine is not an anticholinergic agent. Studies have shown that Cimetidine inhibits both daytime and nocturnal basal gastric acid secretion. Cimetidine also inhibits gastric acid secretion stimulated by food, histamine, pentagastrin, caffeine and insulin.
The half-life of cimetidine is approximately 2 hours. Both oral and parenteral (I.V. or I.M.) administration provide comparable periods of therapeutically effective blood levels; blood concentrations remain above that required to provide 80% inhibition of basal gastric acid secretion for 4 to 5 hours following a dose of 300 mg.
Steady-state blood concentrations of cimetidine with continuous infusion of cimetidine hydrochloride are determined by the infusion rate and clearance of the drug in the individual patient. In a study of peptic ulcer patients with normal renal function, an infusion rate of 37.5 mg/hour produced average steady-state plasma cimetidine concentrations of about 0.9 mcg/mL. Blood levels with other infusion rates will vary in direct proportion to the infusion rate.
The principal route of excretion of cimetidine is the urine. Following parenteral administration, most of the drug is excreted as the parent compound; following oral administration, the drug is more extensively metabolized, the sulfoxide being the major metabolite. Following a single oral dose, 48% of the drug is recovered from the urine after 24 hours as the parent compound. Following I.V. or I.M. administration, approximately 75% of the drug is recovered from the urine after 24 hours as the parent compound.
(1) Short-term treatment of active duodenal ulcer. Most patients heal within 4 weeks and there is rarely reason to use cimetidine at full dosage for longer than 6 to 8 weeks. Concomitant antacids should be given as needed for relief of pain. However, simultaneous administration of oral cimetidine and antacids is not recommended, since antacids have been reported to interfere with the absorption of oral cimetidine.
(2) Maintenance therapy for duodenal ulcer patients at reduced dosage after healing of active ulcer. Patients have been maintained on continued treatment with cimetidine 400 mg h.s. for periods of up to five years.
(3) Short-term treatment of active benign gastric ulcer. There is no information concerning usefulness of treatment periods of longer than 8 weeks.
(4) Prevention of upper gastrointestinal bleeding in critically ill patients.
(5) The treatment of pathological hypersecretory conditions (i.e., Zollinger-Ellison Syndrome, systemic mastocytosis, multiple endocrine adenomas).
Cimetidine is contraindicated for patients known to have hypersensitivity to the product.
Rare instances of cardiac arrhythmias and hypotension have been reported following the rapid administration of cimetidine hydrochloride injection by intravenous bolus.
Symptomatic response to cimetidine therapy does not preclude the presence of a gastric malignancy. There have been rare reports of transient healing of gastric ulcers despite subsequently documented malignancy.
Reversible confusional states have been observed on occasion, predominantly, but not exclusively, in severely ill patients. Advancing age (50 or more years) and pre-existing liver and/or renal disease appear to be contributing factors. In some patients these confusional states have been mild and have not required discontinuation of cimetidine therapy. In cases where discontinuation was judged necessary, the condition usually cleared within 3 to 4 days of drug withdrawal.
cimetidine therapy cannot be recommended for pediatric patients under 16
Cimetidine, apparently through an effect on certain microsomal enzyme systems, has been reported to reduce the hepatic metabolism of warfarin-type anticoagulants, phenytoin, propranolol, nifedipine, chlordiazepoxide, diazepam, certain tricyclic antidepressants, lidocaine, theophylline and metronidazole, thereby delaying elimination and increasing blood levels of these drugs.
Clinically significant effects have been reported with the warfarin anticoagulants; therefore, close monitoring of prothrombin time is recommended, and adjustment of the anticoagulant dose may be necessary when cimetidine is administered concomitantly. Interaction with phenytoin, lidocaine and theophylline has also been reported to produce adverse clinical effects.
However, a crossover study in healthy subjects receiving either cimetidine 300 mg q.i.d. or 800 mg h.s. concomitantly with a 300 mg b.i.d. dosage of theophylline extended-release tablets demonstrated less alteration in steady-state theophylline peak serum levels with the 800 mg h.s. regimen, particularly in subjects aged 54 years and older. Data beyond ten days are not available. Alteration of pH may affect absorption of certain drugs (e.g., ketoconazole). If these products are needed, they should be given at least 2 hours before cimetidine administration.
Gastrointestinal: Diarrhea (usually mild) has been reported in approximately 1 in 100 patients.
CNS: Headaches, ranging from mild to severe, have been reported in 3.5% of 924 patients taking 1600 mg/day, 2.1% of 2,225 patients taking 800 mg/day and 2.3% of 1,897 patients taking placebo. Dizziness and somnolence (usually mild) have been reported in approximately 1 in 100 patients on either 1600 mg/day or 800 mg/day.
Reversible confusional states, e.g., mental confusion, agitation, psychosis, depression, anxiety, hallucinations, disorientation, have been reported predominantly, but not exclusively, in severely ill patients. They have usually developed within 2 to 3 days of initiation of cimetidine therapy and have cleared within 3 to 4 days of discontinuation of the drug.
Endocrine: Gynecomastia has been reported in patients treated for one month or longer. In patients being treated for pathological hypersecretory states, this occurred in about 4% of cases while in all others the incidence was 0.3% to 1% in various studies. No evidence of induced endocrine dysfunction was found, and the condition remained unchanged or returned toward normal with continuing cimetidine treatment.
Reversible impotence has been reported in patients with pathological hypersecretory disorders, e.g., Zollinger-Ellison Syndrome, receiving cimetidine, particularly in high doses, for at least 12 months (range 12 to 79 months, mean 38 months). However, in large-scale surveillance studies at regular dosage, the incidence has not exceeded that commonly reported in the general population.
• Store below 30 C°
• Protect from light and freezing
• Injection 200mg/2ml:Box of 10 Ampoules
-
[view] =>-
) ) [field_contraindications] => Array ( [0] => Array ( [value] => Cimetidine is contraindicated for patients known to have hypersensitivity to the product. [format] => 1 [safe] =>Cimetidine is contraindicated for patients known to have hypersensitivity to the product.
[view] =>Cimetidine is contraindicated for patients known to have hypersensitivity to the product.
) ) [field_dosage_form] => Array ( [0] => Array ( [value] => [format] => [safe] => [view] => ) ) [field_drug_interactions] => Array ( [0] => Array ( [value] => Cimetidine, apparently through an effect on certain microsomal enzyme systems, has been reported to reduce the hepatic metabolism of warfarin-type anticoagulants, phenytoin, propranolol, nifedipine, chlordiazepoxide, diazepam, certain tricyclic antidepressants, lidocaine, theophylline and metronidazole, thereby delaying elimination and increasing blood levels of these drugs. Clinically significant effects have been reported with the warfarin anticoagulants; therefore, close monitoring of prothrombin time is recommended, and adjustment of the anticoagulant dose may be necessary when cimetidine is administered concomitantly. Interaction with phenytoin, lidocaine and theophylline has also been reported to produce adverse clinical effects. However, a crossover study in healthy subjects receiving either cimetidine 300 mg q.i.d. or 800 mg h.s. concomitantly with a 300 mg b.i.d. dosage of theophylline extended-release tablets demonstrated less alteration in steady-state theophylline peak serum levels with the 800 mg h.s. regimen, particularly in subjects aged 54 years and older. Data beyond ten days are not available. Alteration of pH may affect absorption of certain drugs (e.g., ketoconazole). If these products are needed, they should be given at least 2 hours before cimetidine administration. [format] => 1 [safe] =>Cimetidine, apparently through an effect on certain microsomal enzyme systems, has been reported to reduce the hepatic metabolism of warfarin-type anticoagulants, phenytoin, propranolol, nifedipine, chlordiazepoxide, diazepam, certain tricyclic antidepressants, lidocaine, theophylline and metronidazole, thereby delaying elimination and increasing blood levels of these drugs.
Clinically significant effects have been reported with the warfarin anticoagulants; therefore, close monitoring of prothrombin time is recommended, and adjustment of the anticoagulant dose may be necessary when cimetidine is administered concomitantly. Interaction with phenytoin, lidocaine and theophylline has also been reported to produce adverse clinical effects.
However, a crossover study in healthy subjects receiving either cimetidine 300 mg q.i.d. or 800 mg h.s. concomitantly with a 300 mg b.i.d. dosage of theophylline extended-release tablets demonstrated less alteration in steady-state theophylline peak serum levels with the 800 mg h.s. regimen, particularly in subjects aged 54 years and older. Data beyond ten days are not available. Alteration of pH may affect absorption of certain drugs (e.g., ketoconazole). If these products are needed, they should be given at least 2 hours before cimetidine administration.
Cimetidine, apparently through an effect on certain microsomal enzyme systems, has been reported to reduce the hepatic metabolism of warfarin-type anticoagulants, phenytoin, propranolol, nifedipine, chlordiazepoxide, diazepam, certain tricyclic antidepressants, lidocaine, theophylline and metronidazole, thereby delaying elimination and increasing blood levels of these drugs.
Clinically significant effects have been reported with the warfarin anticoagulants; therefore, close monitoring of prothrombin time is recommended, and adjustment of the anticoagulant dose may be necessary when cimetidine is administered concomitantly. Interaction with phenytoin, lidocaine and theophylline has also been reported to produce adverse clinical effects.
However, a crossover study in healthy subjects receiving either cimetidine 300 mg q.i.d. or 800 mg h.s. concomitantly with a 300 mg b.i.d. dosage of theophylline extended-release tablets demonstrated less alteration in steady-state theophylline peak serum levels with the 800 mg h.s. regimen, particularly in subjects aged 54 years and older. Data beyond ten days are not available. Alteration of pH may affect absorption of certain drugs (e.g., ketoconazole). If these products are needed, they should be given at least 2 hours before cimetidine administration.
(1) Short-term treatment of active duodenal ulcer. Most patients heal within 4 weeks and there is rarely reason to use cimetidine at full dosage for longer than 6 to 8 weeks. Concomitant antacids should be given as needed for relief of pain. However, simultaneous administration of oral cimetidine and antacids is not recommended, since antacids have been reported to interfere with the absorption of oral cimetidine.
(2) Maintenance therapy for duodenal ulcer patients at reduced dosage after healing of active ulcer. Patients have been maintained on continued treatment with cimetidine 400 mg h.s. for periods of up to five years.
(3) Short-term treatment of active benign gastric ulcer. There is no information concerning usefulness of treatment periods of longer than 8 weeks.
(4) Prevention of upper gastrointestinal bleeding in critically ill patients.
(5) The treatment of pathological hypersecretory conditions (i.e., Zollinger-Ellison Syndrome, systemic mastocytosis, multiple endocrine adenomas).
(1) Short-term treatment of active duodenal ulcer. Most patients heal within 4 weeks and there is rarely reason to use cimetidine at full dosage for longer than 6 to 8 weeks. Concomitant antacids should be given as needed for relief of pain. However, simultaneous administration of oral cimetidine and antacids is not recommended, since antacids have been reported to interfere with the absorption of oral cimetidine.
(2) Maintenance therapy for duodenal ulcer patients at reduced dosage after healing of active ulcer. Patients have been maintained on continued treatment with cimetidine 400 mg h.s. for periods of up to five years.
(3) Short-term treatment of active benign gastric ulcer. There is no information concerning usefulness of treatment periods of longer than 8 weeks.
(4) Prevention of upper gastrointestinal bleeding in critically ill patients.
(5) The treatment of pathological hypersecretory conditions (i.e., Zollinger-Ellison Syndrome, systemic mastocytosis, multiple endocrine adenomas).
• Injection 200mg/2ml:Box of 10 Ampoules
[view] =>• Injection 200mg/2ml:Box of 10 Ampoules
) ) [field_pdf] => Array ( [0] => Array ( [fid] => 1693 [uid] => 1 [filename] => cimetidine.pdf [filepath] => sites/default/files/pdf/cimetidine.pdf [filemime] => application/pdf [filesize] => 156868 [status] => 1 [timestamp] => 1425374257 [list] => 1 [data] => [i18nsync] => 1 [nid] => 313 [view] => ) ) [field_pharmacokinetics] => Array ( [0] => Array ( [value] => The half-life of cimetidine is approximately 2 hours. Both oral and parenteral (I.V. or I.M.) administration provide comparable periods of therapeutically effective blood levels; blood concentrations remain above that required to provide 80% inhibition of basal gastric acid secretion for 4 to 5 hours following a dose of 300 mg. Steady-state blood concentrations of cimetidine with continuous infusion of cimetidine hydrochloride are determined by the infusion rate and clearance of the drug in the individual patient. In a study of peptic ulcer patients with normal renal function, an infusion rate of 37.5 mg/hour produced average steady-state plasma cimetidine concentrations of about 0.9 mcg/mL. Blood levels with other infusion rates will vary in direct proportion to the infusion rate. The principal route of excretion of cimetidine is the urine. Following parenteral administration, most of the drug is excreted as the parent compound; following oral administration, the drug is more extensively metabolized, the sulfoxide being the major metabolite. Following a single oral dose, 48% of the drug is recovered from the urine after 24 hours as the parent compound. Following I.V. or I.M. administration, approximately 75% of the drug is recovered from the urine after 24 hours as the parent compound. [format] => 1 [safe] =>The half-life of cimetidine is approximately 2 hours. Both oral and parenteral (I.V. or I.M.) administration provide comparable periods of therapeutically effective blood levels; blood concentrations remain above that required to provide 80% inhibition of basal gastric acid secretion for 4 to 5 hours following a dose of 300 mg.
Steady-state blood concentrations of cimetidine with continuous infusion of cimetidine hydrochloride are determined by the infusion rate and clearance of the drug in the individual patient. In a study of peptic ulcer patients with normal renal function, an infusion rate of 37.5 mg/hour produced average steady-state plasma cimetidine concentrations of about 0.9 mcg/mL. Blood levels with other infusion rates will vary in direct proportion to the infusion rate.
The principal route of excretion of cimetidine is the urine. Following parenteral administration, most of the drug is excreted as the parent compound; following oral administration, the drug is more extensively metabolized, the sulfoxide being the major metabolite. Following a single oral dose, 48% of the drug is recovered from the urine after 24 hours as the parent compound. Following I.V. or I.M. administration, approximately 75% of the drug is recovered from the urine after 24 hours as the parent compound.
[view] =>The half-life of cimetidine is approximately 2 hours. Both oral and parenteral (I.V. or I.M.) administration provide comparable periods of therapeutically effective blood levels; blood concentrations remain above that required to provide 80% inhibition of basal gastric acid secretion for 4 to 5 hours following a dose of 300 mg.
Steady-state blood concentrations of cimetidine with continuous infusion of cimetidine hydrochloride are determined by the infusion rate and clearance of the drug in the individual patient. In a study of peptic ulcer patients with normal renal function, an infusion rate of 37.5 mg/hour produced average steady-state plasma cimetidine concentrations of about 0.9 mcg/mL. Blood levels with other infusion rates will vary in direct proportion to the infusion rate.
The principal route of excretion of cimetidine is the urine. Following parenteral administration, most of the drug is excreted as the parent compound; following oral administration, the drug is more extensively metabolized, the sulfoxide being the major metabolite. Following a single oral dose, 48% of the drug is recovered from the urine after 24 hours as the parent compound. Following I.V. or I.M. administration, approximately 75% of the drug is recovered from the urine after 24 hours as the parent compound.
) ) [field_pharmacological_category] => Array ( [0] => Array ( [value] => Histamine -2 Blocker [format] => 1 [safe] =>Histamine -2 Blocker
[view] =>Histamine -2 Blocker
) ) [field_precautions] => Array ( [0] => Array ( [value] => Rare instances of cardiac arrhythmias and hypotension have been reported following the rapid administration of cimetidine hydrochloride injection by intravenous bolus. Symptomatic response to cimetidine therapy does not preclude the presence of a gastric malignancy. There have been rare reports of transient healing of gastric ulcers despite subsequently documented malignancy. Reversible confusional states have been observed on occasion, predominantly, but not exclusively, in severely ill patients. Advancing age (50 or more years) and pre-existing liver and/or renal disease appear to be contributing factors. In some patients these confusional states have been mild and have not required discontinuation of cimetidine therapy. In cases where discontinuation was judged necessary, the condition usually cleared within 3 to 4 days of drug withdrawal. cimetidine therapy cannot be recommended for pediatric patients under 16 [format] => 1 [safe] =>Rare instances of cardiac arrhythmias and hypotension have been reported following the rapid administration of cimetidine hydrochloride injection by intravenous bolus.
Symptomatic response to cimetidine therapy does not preclude the presence of a gastric malignancy. There have been rare reports of transient healing of gastric ulcers despite subsequently documented malignancy.
Reversible confusional states have been observed on occasion, predominantly, but not exclusively, in severely ill patients. Advancing age (50 or more years) and pre-existing liver and/or renal disease appear to be contributing factors. In some patients these confusional states have been mild and have not required discontinuation of cimetidine therapy. In cases where discontinuation was judged necessary, the condition usually cleared within 3 to 4 days of drug withdrawal.
cimetidine therapy cannot be recommended for pediatric patients under 16
Rare instances of cardiac arrhythmias and hypotension have been reported following the rapid administration of cimetidine hydrochloride injection by intravenous bolus.
Symptomatic response to cimetidine therapy does not preclude the presence of a gastric malignancy. There have been rare reports of transient healing of gastric ulcers despite subsequently documented malignancy.
Reversible confusional states have been observed on occasion, predominantly, but not exclusively, in severely ill patients. Advancing age (50 or more years) and pre-existing liver and/or renal disease appear to be contributing factors. In some patients these confusional states have been mild and have not required discontinuation of cimetidine therapy. In cases where discontinuation was judged necessary, the condition usually cleared within 3 to 4 days of drug withdrawal.
cimetidine therapy cannot be recommended for pediatric patients under 16
Category B
[view] =>Category B
) ) [field_references] => Array ( [0] => Array ( [value] => [format] => [safe] => [view] => ) ) [field_side_effects] => Array ( [0] => Array ( [value] => Gastrointestinal: Diarrhea (usually mild) has been reported in approximately 1 in 100 patients. CNS: Headaches, ranging from mild to severe, have been reported in 3.5% of 924 patients taking 1600 mg/day, 2.1% of 2,225 patients taking 800 mg/day and 2.3% of 1,897 patients taking placebo. Dizziness and somnolence (usually mild) have been reported in approximately 1 in 100 patients on either 1600 mg/day or 800 mg/day. Reversible confusional states, e.g., mental confusion, agitation, psychosis, depression, anxiety, hallucinations, disorientation, have been reported predominantly, but not exclusively, in severely ill patients. They have usually developed within 2 to 3 days of initiation of cimetidine therapy and have cleared within 3 to 4 days of discontinuation of the drug. Endocrine: Gynecomastia has been reported in patients treated for one month or longer. In patients being treated for pathological hypersecretory states, this occurred in about 4% of cases while in all others the incidence was 0.3% to 1% in various studies. No evidence of induced endocrine dysfunction was found, and the condition remained unchanged or returned toward normal with continuing cimetidine treatment. Reversible impotence has been reported in patients with pathological hypersecretory disorders, e.g., Zollinger-Ellison Syndrome, receiving cimetidine, particularly in high doses, for at least 12 months (range 12 to 79 months, mean 38 months). However, in large-scale surveillance studies at regular dosage, the incidence has not exceeded that commonly reported in the general population. [format] => 1 [safe] =>Gastrointestinal: Diarrhea (usually mild) has been reported in approximately 1 in 100 patients.
CNS: Headaches, ranging from mild to severe, have been reported in 3.5% of 924 patients taking 1600 mg/day, 2.1% of 2,225 patients taking 800 mg/day and 2.3% of 1,897 patients taking placebo. Dizziness and somnolence (usually mild) have been reported in approximately 1 in 100 patients on either 1600 mg/day or 800 mg/day.
Reversible confusional states, e.g., mental confusion, agitation, psychosis, depression, anxiety, hallucinations, disorientation, have been reported predominantly, but not exclusively, in severely ill patients. They have usually developed within 2 to 3 days of initiation of cimetidine therapy and have cleared within 3 to 4 days of discontinuation of the drug.
Endocrine: Gynecomastia has been reported in patients treated for one month or longer. In patients being treated for pathological hypersecretory states, this occurred in about 4% of cases while in all others the incidence was 0.3% to 1% in various studies. No evidence of induced endocrine dysfunction was found, and the condition remained unchanged or returned toward normal with continuing cimetidine treatment.
Reversible impotence has been reported in patients with pathological hypersecretory disorders, e.g., Zollinger-Ellison Syndrome, receiving cimetidine, particularly in high doses, for at least 12 months (range 12 to 79 months, mean 38 months). However, in large-scale surveillance studies at regular dosage, the incidence has not exceeded that commonly reported in the general population.
Gastrointestinal: Diarrhea (usually mild) has been reported in approximately 1 in 100 patients.
CNS: Headaches, ranging from mild to severe, have been reported in 3.5% of 924 patients taking 1600 mg/day, 2.1% of 2,225 patients taking 800 mg/day and 2.3% of 1,897 patients taking placebo. Dizziness and somnolence (usually mild) have been reported in approximately 1 in 100 patients on either 1600 mg/day or 800 mg/day.
Reversible confusional states, e.g., mental confusion, agitation, psychosis, depression, anxiety, hallucinations, disorientation, have been reported predominantly, but not exclusively, in severely ill patients. They have usually developed within 2 to 3 days of initiation of cimetidine therapy and have cleared within 3 to 4 days of discontinuation of the drug.
Endocrine: Gynecomastia has been reported in patients treated for one month or longer. In patients being treated for pathological hypersecretory states, this occurred in about 4% of cases while in all others the incidence was 0.3% to 1% in various studies. No evidence of induced endocrine dysfunction was found, and the condition remained unchanged or returned toward normal with continuing cimetidine treatment.
Reversible impotence has been reported in patients with pathological hypersecretory disorders, e.g., Zollinger-Ellison Syndrome, receiving cimetidine, particularly in high doses, for at least 12 months (range 12 to 79 months, mean 38 months). However, in large-scale surveillance studies at regular dosage, the incidence has not exceeded that commonly reported in the general population.
• Store below 30 C°
• Protect from light and freezing
• Store below 30 C°
• Protect from light and freezing
Antacid
[view] =>Antacid
) ) [field_related_products] => Array ( [0] => Array ( [nid] => [i18nsync] => 1 [safe] => Array ( ) [view] => ) [1] => Array ( [nid] => [i18nsync] => 1 [safe] => Array ( ) [view] => ) [2] => Array ( [nid] => [i18nsync] => 1 [safe] => Array ( ) [view] => ) ) [taxonomy] => Array ( [11] => stdClass Object ( [tid] => 11 [vid] => 1 [name] => Gastrointestinal Drugs [description] => [weight] => 9 [language] => [trid] => 0 [v_weight_unused] => 0 ) ) [build_mode] => 0 [readmore] => [content] => Array ( [field_one_image] => Array ( [#type_name] => product [#context] => full [#field_name] => field_one_image [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => -3 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => image_plain [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_one_image [#weight] => 0 [#theme] => imagefield_formatter_image_plain [#item] => Array ( [fid] => 1692 [uid] => 1 [filename] => cimetidin_photography1.jpg [filepath] => sites/default/files/images/cimetidin_photography1.jpg [filemime] => image/jpeg [filesize] => 151597 [status] => 1 [timestamp] => 1425373946 [list] => 1 [data] => Array ( [alt] => [title] => ) [i18nsync] => 1 [nid] => 313 [#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] => ) [#title] => [#description] => [#children] => [#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_one_image [#title] => Image [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] => [#printed] => 1 ) [#title] => [#description] => [#children] =>-
[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>-
) [#title] => [#description] => [#children] =>-
[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_brand_name [#title] => Brand Name [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>-
[#printed] => 1 ) [#title] => [#description] => [#children] =>-
Histamine -2 Blocker
[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>Histamine -2 Blocker
) [#title] => [#description] => [#children] =>Histamine -2 Blocker
[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_pharmacological_category [#title] => Pharmacological Category [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>Histamine -2 Blocker
[#printed] => 1 ) [#title] => [#description] => [#children] =>Histamine -2 Blocker
Antacid
[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>Antacid
) [#title] => [#description] => [#children] =>Antacid
[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_therapeutic_category [#title] => Therapeutic Category [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>Antacid
[#printed] => 1 ) [#title] => [#description] => [#children] =>Antacid
Category B
[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>Category B
) [#title] => [#description] => [#children] =>Category B
[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_pregnancy_category [#title] => Pregnancy Category [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>Category B
[#printed] => 1 ) [#title] => [#description] => [#children] =>Category B
Cimetidine competitively inhibits the action of histamine at the histamine H2 receptors of the parietal cells and thus is a histamine H2-receptor antagonist. Cimetidine is not an anticholinergic agent. Studies have shown that Cimetidine inhibits both daytime and nocturnal basal gastric acid secretion. Cimetidine also inhibits gastric acid secretion stimulated by food, histamine, pentagastrin, caffeine and insulin.
[#title] => [#description] => [#printed] => 1 ) [field_pharmacokinetics] => Array ( [#type_name] => product [#context] => full [#field_name] => field_pharmacokinetics [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 4 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_pharmacokinetics [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => The half-life of cimetidine is approximately 2 hours. Both oral and parenteral (I.V. or I.M.) administration provide comparable periods of therapeutically effective blood levels; blood concentrations remain above that required to provide 80% inhibition of basal gastric acid secretion for 4 to 5 hours following a dose of 300 mg. Steady-state blood concentrations of cimetidine with continuous infusion of cimetidine hydrochloride are determined by the infusion rate and clearance of the drug in the individual patient. In a study of peptic ulcer patients with normal renal function, an infusion rate of 37.5 mg/hour produced average steady-state plasma cimetidine concentrations of about 0.9 mcg/mL. Blood levels with other infusion rates will vary in direct proportion to the infusion rate. The principal route of excretion of cimetidine is the urine. Following parenteral administration, most of the drug is excreted as the parent compound; following oral administration, the drug is more extensively metabolized, the sulfoxide being the major metabolite. Following a single oral dose, 48% of the drug is recovered from the urine after 24 hours as the parent compound. Following I.V. or I.M. administration, approximately 75% of the drug is recovered from the urine after 24 hours as the parent compound. [format] => 1 [safe] =>The half-life of cimetidine is approximately 2 hours. Both oral and parenteral (I.V. or I.M.) administration provide comparable periods of therapeutically effective blood levels; blood concentrations remain above that required to provide 80% inhibition of basal gastric acid secretion for 4 to 5 hours following a dose of 300 mg.
Steady-state blood concentrations of cimetidine with continuous infusion of cimetidine hydrochloride are determined by the infusion rate and clearance of the drug in the individual patient. In a study of peptic ulcer patients with normal renal function, an infusion rate of 37.5 mg/hour produced average steady-state plasma cimetidine concentrations of about 0.9 mcg/mL. Blood levels with other infusion rates will vary in direct proportion to the infusion rate.
The principal route of excretion of cimetidine is the urine. Following parenteral administration, most of the drug is excreted as the parent compound; following oral administration, the drug is more extensively metabolized, the sulfoxide being the major metabolite. Following a single oral dose, 48% of the drug is recovered from the urine after 24 hours as the parent compound. Following I.V. or I.M. administration, approximately 75% of the drug is recovered from the urine after 24 hours as the parent compound.
[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>The half-life of cimetidine is approximately 2 hours. Both oral and parenteral (I.V. or I.M.) administration provide comparable periods of therapeutically effective blood levels; blood concentrations remain above that required to provide 80% inhibition of basal gastric acid secretion for 4 to 5 hours following a dose of 300 mg.
Steady-state blood concentrations of cimetidine with continuous infusion of cimetidine hydrochloride are determined by the infusion rate and clearance of the drug in the individual patient. In a study of peptic ulcer patients with normal renal function, an infusion rate of 37.5 mg/hour produced average steady-state plasma cimetidine concentrations of about 0.9 mcg/mL. Blood levels with other infusion rates will vary in direct proportion to the infusion rate.
The principal route of excretion of cimetidine is the urine. Following parenteral administration, most of the drug is excreted as the parent compound; following oral administration, the drug is more extensively metabolized, the sulfoxide being the major metabolite. Following a single oral dose, 48% of the drug is recovered from the urine after 24 hours as the parent compound. Following I.V. or I.M. administration, approximately 75% of the drug is recovered from the urine after 24 hours as the parent compound.
) [#title] => [#description] => [#children] =>The half-life of cimetidine is approximately 2 hours. Both oral and parenteral (I.V. or I.M.) administration provide comparable periods of therapeutically effective blood levels; blood concentrations remain above that required to provide 80% inhibition of basal gastric acid secretion for 4 to 5 hours following a dose of 300 mg.
Steady-state blood concentrations of cimetidine with continuous infusion of cimetidine hydrochloride are determined by the infusion rate and clearance of the drug in the individual patient. In a study of peptic ulcer patients with normal renal function, an infusion rate of 37.5 mg/hour produced average steady-state plasma cimetidine concentrations of about 0.9 mcg/mL. Blood levels with other infusion rates will vary in direct proportion to the infusion rate.
The principal route of excretion of cimetidine is the urine. Following parenteral administration, most of the drug is excreted as the parent compound; following oral administration, the drug is more extensively metabolized, the sulfoxide being the major metabolite. Following a single oral dose, 48% of the drug is recovered from the urine after 24 hours as the parent compound. Following I.V. or I.M. administration, approximately 75% of the drug is recovered from the urine after 24 hours as the parent compound.
[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_pharmacokinetics [#title] => Pharmacokinetics [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>The half-life of cimetidine is approximately 2 hours. Both oral and parenteral (I.V. or I.M.) administration provide comparable periods of therapeutically effective blood levels; blood concentrations remain above that required to provide 80% inhibition of basal gastric acid secretion for 4 to 5 hours following a dose of 300 mg.
Steady-state blood concentrations of cimetidine with continuous infusion of cimetidine hydrochloride are determined by the infusion rate and clearance of the drug in the individual patient. In a study of peptic ulcer patients with normal renal function, an infusion rate of 37.5 mg/hour produced average steady-state plasma cimetidine concentrations of about 0.9 mcg/mL. Blood levels with other infusion rates will vary in direct proportion to the infusion rate.
The principal route of excretion of cimetidine is the urine. Following parenteral administration, most of the drug is excreted as the parent compound; following oral administration, the drug is more extensively metabolized, the sulfoxide being the major metabolite. Following a single oral dose, 48% of the drug is recovered from the urine after 24 hours as the parent compound. Following I.V. or I.M. administration, approximately 75% of the drug is recovered from the urine after 24 hours as the parent compound.
[#printed] => 1 ) [#title] => [#description] => [#children] =>The half-life of cimetidine is approximately 2 hours. Both oral and parenteral (I.V. or I.M.) administration provide comparable periods of therapeutically effective blood levels; blood concentrations remain above that required to provide 80% inhibition of basal gastric acid secretion for 4 to 5 hours following a dose of 300 mg.
Steady-state blood concentrations of cimetidine with continuous infusion of cimetidine hydrochloride are determined by the infusion rate and clearance of the drug in the individual patient. In a study of peptic ulcer patients with normal renal function, an infusion rate of 37.5 mg/hour produced average steady-state plasma cimetidine concentrations of about 0.9 mcg/mL. Blood levels with other infusion rates will vary in direct proportion to the infusion rate.
The principal route of excretion of cimetidine is the urine. Following parenteral administration, most of the drug is excreted as the parent compound; following oral administration, the drug is more extensively metabolized, the sulfoxide being the major metabolite. Following a single oral dose, 48% of the drug is recovered from the urine after 24 hours as the parent compound. Following I.V. or I.M. administration, approximately 75% of the drug is recovered from the urine after 24 hours as the parent compound.
(1) Short-term treatment of active duodenal ulcer. Most patients heal within 4 weeks and there is rarely reason to use cimetidine at full dosage for longer than 6 to 8 weeks. Concomitant antacids should be given as needed for relief of pain. However, simultaneous administration of oral cimetidine and antacids is not recommended, since antacids have been reported to interfere with the absorption of oral cimetidine.
(2) Maintenance therapy for duodenal ulcer patients at reduced dosage after healing of active ulcer. Patients have been maintained on continued treatment with cimetidine 400 mg h.s. for periods of up to five years.
(3) Short-term treatment of active benign gastric ulcer. There is no information concerning usefulness of treatment periods of longer than 8 weeks.
(4) Prevention of upper gastrointestinal bleeding in critically ill patients.
(5) The treatment of pathological hypersecretory conditions (i.e., Zollinger-Ellison Syndrome, systemic mastocytosis, multiple endocrine adenomas).
(1) Short-term treatment of active duodenal ulcer. Most patients heal within 4 weeks and there is rarely reason to use cimetidine at full dosage for longer than 6 to 8 weeks. Concomitant antacids should be given as needed for relief of pain. However, simultaneous administration of oral cimetidine and antacids is not recommended, since antacids have been reported to interfere with the absorption of oral cimetidine.
(2) Maintenance therapy for duodenal ulcer patients at reduced dosage after healing of active ulcer. Patients have been maintained on continued treatment with cimetidine 400 mg h.s. for periods of up to five years.
(3) Short-term treatment of active benign gastric ulcer. There is no information concerning usefulness of treatment periods of longer than 8 weeks.
(4) Prevention of upper gastrointestinal bleeding in critically ill patients.
(5) The treatment of pathological hypersecretory conditions (i.e., Zollinger-Ellison Syndrome, systemic mastocytosis, multiple endocrine adenomas).
(1) Short-term treatment of active duodenal ulcer. Most patients heal within 4 weeks and there is rarely reason to use cimetidine at full dosage for longer than 6 to 8 weeks. Concomitant antacids should be given as needed for relief of pain. However, simultaneous administration of oral cimetidine and antacids is not recommended, since antacids have been reported to interfere with the absorption of oral cimetidine.
(2) Maintenance therapy for duodenal ulcer patients at reduced dosage after healing of active ulcer. Patients have been maintained on continued treatment with cimetidine 400 mg h.s. for periods of up to five years.
(3) Short-term treatment of active benign gastric ulcer. There is no information concerning usefulness of treatment periods of longer than 8 weeks.
(4) Prevention of upper gastrointestinal bleeding in critically ill patients.
(5) The treatment of pathological hypersecretory conditions (i.e., Zollinger-Ellison Syndrome, systemic mastocytosis, multiple endocrine adenomas).
(1) Short-term treatment of active duodenal ulcer. Most patients heal within 4 weeks and there is rarely reason to use cimetidine at full dosage for longer than 6 to 8 weeks. Concomitant antacids should be given as needed for relief of pain. However, simultaneous administration of oral cimetidine and antacids is not recommended, since antacids have been reported to interfere with the absorption of oral cimetidine.
(2) Maintenance therapy for duodenal ulcer patients at reduced dosage after healing of active ulcer. Patients have been maintained on continued treatment with cimetidine 400 mg h.s. for periods of up to five years.
(3) Short-term treatment of active benign gastric ulcer. There is no information concerning usefulness of treatment periods of longer than 8 weeks.
(4) Prevention of upper gastrointestinal bleeding in critically ill patients.
(5) The treatment of pathological hypersecretory conditions (i.e., Zollinger-Ellison Syndrome, systemic mastocytosis, multiple endocrine adenomas).
(1) Short-term treatment of active duodenal ulcer. Most patients heal within 4 weeks and there is rarely reason to use cimetidine at full dosage for longer than 6 to 8 weeks. Concomitant antacids should be given as needed for relief of pain. However, simultaneous administration of oral cimetidine and antacids is not recommended, since antacids have been reported to interfere with the absorption of oral cimetidine.
(2) Maintenance therapy for duodenal ulcer patients at reduced dosage after healing of active ulcer. Patients have been maintained on continued treatment with cimetidine 400 mg h.s. for periods of up to five years.
(3) Short-term treatment of active benign gastric ulcer. There is no information concerning usefulness of treatment periods of longer than 8 weeks.
(4) Prevention of upper gastrointestinal bleeding in critically ill patients.
(5) The treatment of pathological hypersecretory conditions (i.e., Zollinger-Ellison Syndrome, systemic mastocytosis, multiple endocrine adenomas).
Cimetidine is contraindicated for patients known to have hypersensitivity to the product.
[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>Cimetidine is contraindicated for patients known to have hypersensitivity to the product.
) [#title] => [#description] => [#children] =>Cimetidine is contraindicated for patients known to have hypersensitivity to the product.
[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_contraindications [#title] => Contraindications [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>Cimetidine is contraindicated for patients known to have hypersensitivity to the product.
[#printed] => 1 ) [#title] => [#description] => [#children] =>Cimetidine is contraindicated for patients known to have hypersensitivity to the product.
Rare instances of cardiac arrhythmias and hypotension have been reported following the rapid administration of cimetidine hydrochloride injection by intravenous bolus.
Symptomatic response to cimetidine therapy does not preclude the presence of a gastric malignancy. There have been rare reports of transient healing of gastric ulcers despite subsequently documented malignancy.
Reversible confusional states have been observed on occasion, predominantly, but not exclusively, in severely ill patients. Advancing age (50 or more years) and pre-existing liver and/or renal disease appear to be contributing factors. In some patients these confusional states have been mild and have not required discontinuation of cimetidine therapy. In cases where discontinuation was judged necessary, the condition usually cleared within 3 to 4 days of drug withdrawal.
cimetidine therapy cannot be recommended for pediatric patients under 16
Rare instances of cardiac arrhythmias and hypotension have been reported following the rapid administration of cimetidine hydrochloride injection by intravenous bolus.
Symptomatic response to cimetidine therapy does not preclude the presence of a gastric malignancy. There have been rare reports of transient healing of gastric ulcers despite subsequently documented malignancy.
Reversible confusional states have been observed on occasion, predominantly, but not exclusively, in severely ill patients. Advancing age (50 or more years) and pre-existing liver and/or renal disease appear to be contributing factors. In some patients these confusional states have been mild and have not required discontinuation of cimetidine therapy. In cases where discontinuation was judged necessary, the condition usually cleared within 3 to 4 days of drug withdrawal.
cimetidine therapy cannot be recommended for pediatric patients under 16
Rare instances of cardiac arrhythmias and hypotension have been reported following the rapid administration of cimetidine hydrochloride injection by intravenous bolus.
Symptomatic response to cimetidine therapy does not preclude the presence of a gastric malignancy. There have been rare reports of transient healing of gastric ulcers despite subsequently documented malignancy.
Reversible confusional states have been observed on occasion, predominantly, but not exclusively, in severely ill patients. Advancing age (50 or more years) and pre-existing liver and/or renal disease appear to be contributing factors. In some patients these confusional states have been mild and have not required discontinuation of cimetidine therapy. In cases where discontinuation was judged necessary, the condition usually cleared within 3 to 4 days of drug withdrawal.
cimetidine therapy cannot be recommended for pediatric patients under 16
Rare instances of cardiac arrhythmias and hypotension have been reported following the rapid administration of cimetidine hydrochloride injection by intravenous bolus.
Symptomatic response to cimetidine therapy does not preclude the presence of a gastric malignancy. There have been rare reports of transient healing of gastric ulcers despite subsequently documented malignancy.
Reversible confusional states have been observed on occasion, predominantly, but not exclusively, in severely ill patients. Advancing age (50 or more years) and pre-existing liver and/or renal disease appear to be contributing factors. In some patients these confusional states have been mild and have not required discontinuation of cimetidine therapy. In cases where discontinuation was judged necessary, the condition usually cleared within 3 to 4 days of drug withdrawal.
cimetidine therapy cannot be recommended for pediatric patients under 16
Rare instances of cardiac arrhythmias and hypotension have been reported following the rapid administration of cimetidine hydrochloride injection by intravenous bolus.
Symptomatic response to cimetidine therapy does not preclude the presence of a gastric malignancy. There have been rare reports of transient healing of gastric ulcers despite subsequently documented malignancy.
Reversible confusional states have been observed on occasion, predominantly, but not exclusively, in severely ill patients. Advancing age (50 or more years) and pre-existing liver and/or renal disease appear to be contributing factors. In some patients these confusional states have been mild and have not required discontinuation of cimetidine therapy. In cases where discontinuation was judged necessary, the condition usually cleared within 3 to 4 days of drug withdrawal.
cimetidine therapy cannot be recommended for pediatric patients under 16
Cimetidine, apparently through an effect on certain microsomal enzyme systems, has been reported to reduce the hepatic metabolism of warfarin-type anticoagulants, phenytoin, propranolol, nifedipine, chlordiazepoxide, diazepam, certain tricyclic antidepressants, lidocaine, theophylline and metronidazole, thereby delaying elimination and increasing blood levels of these drugs.
Clinically significant effects have been reported with the warfarin anticoagulants; therefore, close monitoring of prothrombin time is recommended, and adjustment of the anticoagulant dose may be necessary when cimetidine is administered concomitantly. Interaction with phenytoin, lidocaine and theophylline has also been reported to produce adverse clinical effects.
However, a crossover study in healthy subjects receiving either cimetidine 300 mg q.i.d. or 800 mg h.s. concomitantly with a 300 mg b.i.d. dosage of theophylline extended-release tablets demonstrated less alteration in steady-state theophylline peak serum levels with the 800 mg h.s. regimen, particularly in subjects aged 54 years and older. Data beyond ten days are not available. Alteration of pH may affect absorption of certain drugs (e.g., ketoconazole). If these products are needed, they should be given at least 2 hours before cimetidine administration.
Cimetidine, apparently through an effect on certain microsomal enzyme systems, has been reported to reduce the hepatic metabolism of warfarin-type anticoagulants, phenytoin, propranolol, nifedipine, chlordiazepoxide, diazepam, certain tricyclic antidepressants, lidocaine, theophylline and metronidazole, thereby delaying elimination and increasing blood levels of these drugs.
Clinically significant effects have been reported with the warfarin anticoagulants; therefore, close monitoring of prothrombin time is recommended, and adjustment of the anticoagulant dose may be necessary when cimetidine is administered concomitantly. Interaction with phenytoin, lidocaine and theophylline has also been reported to produce adverse clinical effects.
However, a crossover study in healthy subjects receiving either cimetidine 300 mg q.i.d. or 800 mg h.s. concomitantly with a 300 mg b.i.d. dosage of theophylline extended-release tablets demonstrated less alteration in steady-state theophylline peak serum levels with the 800 mg h.s. regimen, particularly in subjects aged 54 years and older. Data beyond ten days are not available. Alteration of pH may affect absorption of certain drugs (e.g., ketoconazole). If these products are needed, they should be given at least 2 hours before cimetidine administration.
Cimetidine, apparently through an effect on certain microsomal enzyme systems, has been reported to reduce the hepatic metabolism of warfarin-type anticoagulants, phenytoin, propranolol, nifedipine, chlordiazepoxide, diazepam, certain tricyclic antidepressants, lidocaine, theophylline and metronidazole, thereby delaying elimination and increasing blood levels of these drugs.
Clinically significant effects have been reported with the warfarin anticoagulants; therefore, close monitoring of prothrombin time is recommended, and adjustment of the anticoagulant dose may be necessary when cimetidine is administered concomitantly. Interaction with phenytoin, lidocaine and theophylline has also been reported to produce adverse clinical effects.
However, a crossover study in healthy subjects receiving either cimetidine 300 mg q.i.d. or 800 mg h.s. concomitantly with a 300 mg b.i.d. dosage of theophylline extended-release tablets demonstrated less alteration in steady-state theophylline peak serum levels with the 800 mg h.s. regimen, particularly in subjects aged 54 years and older. Data beyond ten days are not available. Alteration of pH may affect absorption of certain drugs (e.g., ketoconazole). If these products are needed, they should be given at least 2 hours before cimetidine administration.
Cimetidine, apparently through an effect on certain microsomal enzyme systems, has been reported to reduce the hepatic metabolism of warfarin-type anticoagulants, phenytoin, propranolol, nifedipine, chlordiazepoxide, diazepam, certain tricyclic antidepressants, lidocaine, theophylline and metronidazole, thereby delaying elimination and increasing blood levels of these drugs.
Clinically significant effects have been reported with the warfarin anticoagulants; therefore, close monitoring of prothrombin time is recommended, and adjustment of the anticoagulant dose may be necessary when cimetidine is administered concomitantly. Interaction with phenytoin, lidocaine and theophylline has also been reported to produce adverse clinical effects.
However, a crossover study in healthy subjects receiving either cimetidine 300 mg q.i.d. or 800 mg h.s. concomitantly with a 300 mg b.i.d. dosage of theophylline extended-release tablets demonstrated less alteration in steady-state theophylline peak serum levels with the 800 mg h.s. regimen, particularly in subjects aged 54 years and older. Data beyond ten days are not available. Alteration of pH may affect absorption of certain drugs (e.g., ketoconazole). If these products are needed, they should be given at least 2 hours before cimetidine administration.
Cimetidine, apparently through an effect on certain microsomal enzyme systems, has been reported to reduce the hepatic metabolism of warfarin-type anticoagulants, phenytoin, propranolol, nifedipine, chlordiazepoxide, diazepam, certain tricyclic antidepressants, lidocaine, theophylline and metronidazole, thereby delaying elimination and increasing blood levels of these drugs.
Clinically significant effects have been reported with the warfarin anticoagulants; therefore, close monitoring of prothrombin time is recommended, and adjustment of the anticoagulant dose may be necessary when cimetidine is administered concomitantly. Interaction with phenytoin, lidocaine and theophylline has also been reported to produce adverse clinical effects.
However, a crossover study in healthy subjects receiving either cimetidine 300 mg q.i.d. or 800 mg h.s. concomitantly with a 300 mg b.i.d. dosage of theophylline extended-release tablets demonstrated less alteration in steady-state theophylline peak serum levels with the 800 mg h.s. regimen, particularly in subjects aged 54 years and older. Data beyond ten days are not available. Alteration of pH may affect absorption of certain drugs (e.g., ketoconazole). If these products are needed, they should be given at least 2 hours before cimetidine administration.
Gastrointestinal: Diarrhea (usually mild) has been reported in approximately 1 in 100 patients.
CNS: Headaches, ranging from mild to severe, have been reported in 3.5% of 924 patients taking 1600 mg/day, 2.1% of 2,225 patients taking 800 mg/day and 2.3% of 1,897 patients taking placebo. Dizziness and somnolence (usually mild) have been reported in approximately 1 in 100 patients on either 1600 mg/day or 800 mg/day.
Reversible confusional states, e.g., mental confusion, agitation, psychosis, depression, anxiety, hallucinations, disorientation, have been reported predominantly, but not exclusively, in severely ill patients. They have usually developed within 2 to 3 days of initiation of cimetidine therapy and have cleared within 3 to 4 days of discontinuation of the drug.
Endocrine: Gynecomastia has been reported in patients treated for one month or longer. In patients being treated for pathological hypersecretory states, this occurred in about 4% of cases while in all others the incidence was 0.3% to 1% in various studies. No evidence of induced endocrine dysfunction was found, and the condition remained unchanged or returned toward normal with continuing cimetidine treatment.
Reversible impotence has been reported in patients with pathological hypersecretory disorders, e.g., Zollinger-Ellison Syndrome, receiving cimetidine, particularly in high doses, for at least 12 months (range 12 to 79 months, mean 38 months). However, in large-scale surveillance studies at regular dosage, the incidence has not exceeded that commonly reported in the general population.
Gastrointestinal: Diarrhea (usually mild) has been reported in approximately 1 in 100 patients.
CNS: Headaches, ranging from mild to severe, have been reported in 3.5% of 924 patients taking 1600 mg/day, 2.1% of 2,225 patients taking 800 mg/day and 2.3% of 1,897 patients taking placebo. Dizziness and somnolence (usually mild) have been reported in approximately 1 in 100 patients on either 1600 mg/day or 800 mg/day.
Reversible confusional states, e.g., mental confusion, agitation, psychosis, depression, anxiety, hallucinations, disorientation, have been reported predominantly, but not exclusively, in severely ill patients. They have usually developed within 2 to 3 days of initiation of cimetidine therapy and have cleared within 3 to 4 days of discontinuation of the drug.
Endocrine: Gynecomastia has been reported in patients treated for one month or longer. In patients being treated for pathological hypersecretory states, this occurred in about 4% of cases while in all others the incidence was 0.3% to 1% in various studies. No evidence of induced endocrine dysfunction was found, and the condition remained unchanged or returned toward normal with continuing cimetidine treatment.
Reversible impotence has been reported in patients with pathological hypersecretory disorders, e.g., Zollinger-Ellison Syndrome, receiving cimetidine, particularly in high doses, for at least 12 months (range 12 to 79 months, mean 38 months). However, in large-scale surveillance studies at regular dosage, the incidence has not exceeded that commonly reported in the general population.
Gastrointestinal: Diarrhea (usually mild) has been reported in approximately 1 in 100 patients.
CNS: Headaches, ranging from mild to severe, have been reported in 3.5% of 924 patients taking 1600 mg/day, 2.1% of 2,225 patients taking 800 mg/day and 2.3% of 1,897 patients taking placebo. Dizziness and somnolence (usually mild) have been reported in approximately 1 in 100 patients on either 1600 mg/day or 800 mg/day.
Reversible confusional states, e.g., mental confusion, agitation, psychosis, depression, anxiety, hallucinations, disorientation, have been reported predominantly, but not exclusively, in severely ill patients. They have usually developed within 2 to 3 days of initiation of cimetidine therapy and have cleared within 3 to 4 days of discontinuation of the drug.
Endocrine: Gynecomastia has been reported in patients treated for one month or longer. In patients being treated for pathological hypersecretory states, this occurred in about 4% of cases while in all others the incidence was 0.3% to 1% in various studies. No evidence of induced endocrine dysfunction was found, and the condition remained unchanged or returned toward normal with continuing cimetidine treatment.
Reversible impotence has been reported in patients with pathological hypersecretory disorders, e.g., Zollinger-Ellison Syndrome, receiving cimetidine, particularly in high doses, for at least 12 months (range 12 to 79 months, mean 38 months). However, in large-scale surveillance studies at regular dosage, the incidence has not exceeded that commonly reported in the general population.
Gastrointestinal: Diarrhea (usually mild) has been reported in approximately 1 in 100 patients.
CNS: Headaches, ranging from mild to severe, have been reported in 3.5% of 924 patients taking 1600 mg/day, 2.1% of 2,225 patients taking 800 mg/day and 2.3% of 1,897 patients taking placebo. Dizziness and somnolence (usually mild) have been reported in approximately 1 in 100 patients on either 1600 mg/day or 800 mg/day.
Reversible confusional states, e.g., mental confusion, agitation, psychosis, depression, anxiety, hallucinations, disorientation, have been reported predominantly, but not exclusively, in severely ill patients. They have usually developed within 2 to 3 days of initiation of cimetidine therapy and have cleared within 3 to 4 days of discontinuation of the drug.
Endocrine: Gynecomastia has been reported in patients treated for one month or longer. In patients being treated for pathological hypersecretory states, this occurred in about 4% of cases while in all others the incidence was 0.3% to 1% in various studies. No evidence of induced endocrine dysfunction was found, and the condition remained unchanged or returned toward normal with continuing cimetidine treatment.
Reversible impotence has been reported in patients with pathological hypersecretory disorders, e.g., Zollinger-Ellison Syndrome, receiving cimetidine, particularly in high doses, for at least 12 months (range 12 to 79 months, mean 38 months). However, in large-scale surveillance studies at regular dosage, the incidence has not exceeded that commonly reported in the general population.
Gastrointestinal: Diarrhea (usually mild) has been reported in approximately 1 in 100 patients.
CNS: Headaches, ranging from mild to severe, have been reported in 3.5% of 924 patients taking 1600 mg/day, 2.1% of 2,225 patients taking 800 mg/day and 2.3% of 1,897 patients taking placebo. Dizziness and somnolence (usually mild) have been reported in approximately 1 in 100 patients on either 1600 mg/day or 800 mg/day.
Reversible confusional states, e.g., mental confusion, agitation, psychosis, depression, anxiety, hallucinations, disorientation, have been reported predominantly, but not exclusively, in severely ill patients. They have usually developed within 2 to 3 days of initiation of cimetidine therapy and have cleared within 3 to 4 days of discontinuation of the drug.
Endocrine: Gynecomastia has been reported in patients treated for one month or longer. In patients being treated for pathological hypersecretory states, this occurred in about 4% of cases while in all others the incidence was 0.3% to 1% in various studies. No evidence of induced endocrine dysfunction was found, and the condition remained unchanged or returned toward normal with continuing cimetidine treatment.
Reversible impotence has been reported in patients with pathological hypersecretory disorders, e.g., Zollinger-Ellison Syndrome, receiving cimetidine, particularly in high doses, for at least 12 months (range 12 to 79 months, mean 38 months). However, in large-scale surveillance studies at regular dosage, the incidence has not exceeded that commonly reported in the general population.
• Store below 30 C°
• Protect from light and freezing
• Store below 30 C°
• Protect from light and freezing
• Store below 30 C°
• Protect from light and freezing
• Store below 30 C°
• Protect from light and freezing
• Store below 30 C°
• Protect from light and freezing
• Injection 200mg/2ml:Box of 10 Ampoules
[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>• Injection 200mg/2ml:Box of 10 Ampoules
) [#title] => [#description] => [#children] =>• Injection 200mg/2ml:Box of 10 Ampoules
[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_packing [#title] => Packing [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>• Injection 200mg/2ml:Box of 10 Ampoules
[#printed] => 1 ) [#title] => [#description] => [#children] =>• Injection 200mg/2ml:Box of 10 Ampoules
-
Histamine -2 Blocker
Antacid
Category B
Cimetidine competitively inhibits the action of histamine at the histamine H2 receptors of the parietal cells and thus is a histamine H2-receptor antagonist. Cimetidine is not an anticholinergic agent. Studies have shown that Cimetidine inhibits both daytime and nocturnal basal gastric acid secretion. Cimetidine also inhibits gastric acid secretion stimulated by food, histamine, pentagastrin, caffeine and insulin.
The half-life of cimetidine is approximately 2 hours. Both oral and parenteral (I.V. or I.M.) administration provide comparable periods of therapeutically effective blood levels; blood concentrations remain above that required to provide 80% inhibition of basal gastric acid secretion for 4 to 5 hours following a dose of 300 mg.
Steady-state blood concentrations of cimetidine with continuous infusion of cimetidine hydrochloride are determined by the infusion rate and clearance of the drug in the individual patient. In a study of peptic ulcer patients with normal renal function, an infusion rate of 37.5 mg/hour produced average steady-state plasma cimetidine concentrations of about 0.9 mcg/mL. Blood levels with other infusion rates will vary in direct proportion to the infusion rate.
The principal route of excretion of cimetidine is the urine. Following parenteral administration, most of the drug is excreted as the parent compound; following oral administration, the drug is more extensively metabolized, the sulfoxide being the major metabolite. Following a single oral dose, 48% of the drug is recovered from the urine after 24 hours as the parent compound. Following I.V. or I.M. administration, approximately 75% of the drug is recovered from the urine after 24 hours as the parent compound.
(1) Short-term treatment of active duodenal ulcer. Most patients heal within 4 weeks and there is rarely reason to use cimetidine at full dosage for longer than 6 to 8 weeks. Concomitant antacids should be given as needed for relief of pain. However, simultaneous administration of oral cimetidine and antacids is not recommended, since antacids have been reported to interfere with the absorption of oral cimetidine.
(2) Maintenance therapy for duodenal ulcer patients at reduced dosage after healing of active ulcer. Patients have been maintained on continued treatment with cimetidine 400 mg h.s. for periods of up to five years.
(3) Short-term treatment of active benign gastric ulcer. There is no information concerning usefulness of treatment periods of longer than 8 weeks.
(4) Prevention of upper gastrointestinal bleeding in critically ill patients.
(5) The treatment of pathological hypersecretory conditions (i.e., Zollinger-Ellison Syndrome, systemic mastocytosis, multiple endocrine adenomas).
Cimetidine is contraindicated for patients known to have hypersensitivity to the product.
Rare instances of cardiac arrhythmias and hypotension have been reported following the rapid administration of cimetidine hydrochloride injection by intravenous bolus.
Symptomatic response to cimetidine therapy does not preclude the presence of a gastric malignancy. There have been rare reports of transient healing of gastric ulcers despite subsequently documented malignancy.
Reversible confusional states have been observed on occasion, predominantly, but not exclusively, in severely ill patients. Advancing age (50 or more years) and pre-existing liver and/or renal disease appear to be contributing factors. In some patients these confusional states have been mild and have not required discontinuation of cimetidine therapy. In cases where discontinuation was judged necessary, the condition usually cleared within 3 to 4 days of drug withdrawal.
cimetidine therapy cannot be recommended for pediatric patients under 16
Cimetidine, apparently through an effect on certain microsomal enzyme systems, has been reported to reduce the hepatic metabolism of warfarin-type anticoagulants, phenytoin, propranolol, nifedipine, chlordiazepoxide, diazepam, certain tricyclic antidepressants, lidocaine, theophylline and metronidazole, thereby delaying elimination and increasing blood levels of these drugs.
Clinically significant effects have been reported with the warfarin anticoagulants; therefore, close monitoring of prothrombin time is recommended, and adjustment of the anticoagulant dose may be necessary when cimetidine is administered concomitantly. Interaction with phenytoin, lidocaine and theophylline has also been reported to produce adverse clinical effects.
However, a crossover study in healthy subjects receiving either cimetidine 300 mg q.i.d. or 800 mg h.s. concomitantly with a 300 mg b.i.d. dosage of theophylline extended-release tablets demonstrated less alteration in steady-state theophylline peak serum levels with the 800 mg h.s. regimen, particularly in subjects aged 54 years and older. Data beyond ten days are not available. Alteration of pH may affect absorption of certain drugs (e.g., ketoconazole). If these products are needed, they should be given at least 2 hours before cimetidine administration.
Gastrointestinal: Diarrhea (usually mild) has been reported in approximately 1 in 100 patients.
CNS: Headaches, ranging from mild to severe, have been reported in 3.5% of 924 patients taking 1600 mg/day, 2.1% of 2,225 patients taking 800 mg/day and 2.3% of 1,897 patients taking placebo. Dizziness and somnolence (usually mild) have been reported in approximately 1 in 100 patients on either 1600 mg/day or 800 mg/day.
Reversible confusional states, e.g., mental confusion, agitation, psychosis, depression, anxiety, hallucinations, disorientation, have been reported predominantly, but not exclusively, in severely ill patients. They have usually developed within 2 to 3 days of initiation of cimetidine therapy and have cleared within 3 to 4 days of discontinuation of the drug.
Endocrine: Gynecomastia has been reported in patients treated for one month or longer. In patients being treated for pathological hypersecretory states, this occurred in about 4% of cases while in all others the incidence was 0.3% to 1% in various studies. No evidence of induced endocrine dysfunction was found, and the condition remained unchanged or returned toward normal with continuing cimetidine treatment.
Reversible impotence has been reported in patients with pathological hypersecretory disorders, e.g., Zollinger-Ellison Syndrome, receiving cimetidine, particularly in high doses, for at least 12 months (range 12 to 79 months, mean 38 months). However, in large-scale surveillance studies at regular dosage, the incidence has not exceeded that commonly reported in the general population.
• Store below 30 C°
• Protect from light and freezing
• Injection 200mg/2ml:Box of 10 Ampoules
(C) Copyright Caspian Tamin Pharmaceutical Co.
All Rights Reserved.